Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
1.
Proc Natl Acad Sci U S A ; 119(28): e2204607119, 2022 07 12.
Статья в английский | MEDLINE | ID: covidwho-1908385

Реферат

Messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective at inducing protective immunity. However, weak antibody responses are seen in some individuals, and cellular correlates of immunity remain poorly defined, especially for B cells. Here we used unbiased approaches to longitudinally dissect primary antibody, plasmablast, and memory B cell (MBC) responses to the two-dose mRNA-1273 vaccine in SARS-CoV-2-naive adults. Coordinated immunoglobulin A (IgA) and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses but earlier and more intensely after dose 2. While antibody and B cell cellular responses were generally robust, they also varied within the cohort and decreased over time after a dose-2 peak. Both antigen-nonspecific postvaccination plasmablast frequency after dose 1 and their spike-specific counterparts early after dose 2 correlated with subsequent antibody levels. This correlation between early plasmablasts and antibodies remained for titers measured at 6 months after vaccination. Several distinct antigen-specific MBC populations emerged postvaccination with varying kinetics, including two MBC populations that correlated with 2- and 6-month antibody titers. Both were IgG-expressing MBCs: one less mature, appearing as a correlate after the first dose, while the other MBC correlate showed a more mature and resting phenotype, emerging as a correlate later after dose 2. This latter MBC was also a major contributor to the sustained spike-specific MBC response observed at month 6. Thus, these plasmablasts and MBCs that emerged after both the first and second doses with distinct kinetics are potential determinants of the magnitude and durability of antibodies in response to mRNA-based vaccination.


Тема - темы
2019-nCoV Vaccine mRNA-1273 , Antibody Formation , B-Lymphocytes , COVID-19 , RNA, Messenger , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , B-Lymphocytes/immunology , COVID-19/prevention & control , Humans , Immunity, Cellular , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , SARS-CoV-2/immunology , Vaccination
2.
Emerg Microbes Infect ; 10(1): 2016-2029, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1493580

Реферат

ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.


Тема - темы
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Immunization , Immunization Schedule , Immunogenicity, Vaccine , Mesocricetus , Mice , Spike Glycoprotein, Coronavirus , Vaccination , Viral Load
Критерии поиска